

Benha University Faculty of Engineering Shoubra

Electrical Circuits (2) Elec

Electrical Eng. Dept.

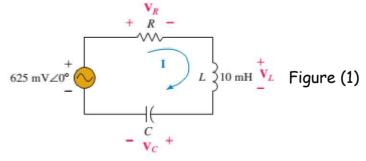
1st year communication

1-3 March 2015

Sheet (2)... Series Resonance

1. A series RLC network has R=2k Ω , L=40 mH, and C=1 μ F. Calculate the impedance at resonance and at one-fourth, one-half, twice, and four times the resonant frequency.

(Ans. 2K, $2-j0.75K\Omega$, $2-j0.3K\Omega$, $2+j0.3K\Omega$, $2+j0.75K\Omega$).


2. A coil with resistance 3Ω and inductance 100 mH is connected in series with a capacitor of 50 pF, a resistor of 6Ω and a signal generator that gives 110 V rms at all frequencies. Calculate wo, Q, and B at resonance of the resultant series RLC circuit.

(Ans. 447.21 krad/s, 4969, 90 rad/s).

3. Design a series RLC circuit with B=20 rad/s and ω_0 =1000 rad/s. Find the circuit's Q.

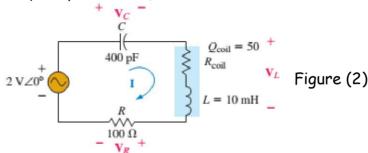
(Ans. = Q = 50, assume $R = 10\Omega$, so L = 0.5H, $C = 2\mu F$).

- 4. Consider the circuit of Figure 1
 - a. Determine the values of R and C such that the circuit has a resonant frequency of 25 kHz and an rms current of 25 mA at resonance.
 - b. Calculate the power dissipated by the circuit at resonance.
 - c. Determine the phasor voltages, V_{C} , V_{L} , and V_{R} at resonance.

(Ans. a- $\underline{\text{R=}25\Omega}$, $\underline{\textit{C=}4.05\text{nF}}$ /// b- $\underline{\text{P=}15.6\text{mW}}$ /// c- $\underline{\textit{V}_c=39.3\angle-90}$, $\underline{\textit{V}_L=39.3\angle90}$, $\underline{\textit{V}_R=0.625\angle0}$)

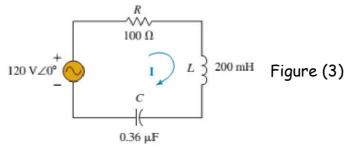
Benha University Faculty of Engineering Shoubra

Electrical Circuits (2)


Electrical Eng. Dept.

1st year communication

1-3 March 2015



- 5. Refer to the circuit of Figure 2.
 - a. Determine the resonant frequency expressed as w (rad/s) and f(Hz).
 - b. Calculate the total impedance, Z_T , at resonance.
 - c. Solve for current I at resonance.
 - d. Solve for V_R , V_L , and V_C at resonance.
 - e. Calculate the power dissipated by the circuit and evaluate the reactive powers, Q_{C} and $Q_{\text{L}}.$
 - f. Find the quality factor, Q_5 , of the circuit.

(Ans. a- \underline{w}_s =500Krad/s, \underline{f}_s =79.6KHz /// b- \underline{Z}_t =200 \underline{Z}_t 0 /// C- \underline{I}_t =10mA \underline{Z}_t 0 /// \underline{d}_t 0 // \underline{d}_t 1 - \underline{V}_t =50.01 \underline{Z}_t 88.85, \underline{V}_t 2=50 \underline{Z}_t 5).

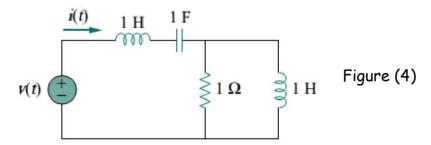
- 6. Refer to the circuit of Figure 3.
 - a. Find w_5 , Q, and BW (in radians per second).
 - b. Calculate the maximum power dissipated by the circuit.
 - c. From the results obtained in (a) solve for the approximate half-power frequencies, $\omega 1$ and $\omega 2$.
 - d. Calculate the actual half-power frequencies, w1 and w2, using the component values and the appropriate equations.

(Ans. a- \underline{w}_s =3727rad/s, Q=7.45, BW=500rad/s /// b- Pmax=144W /// C- w1=3477rad/s , w2=3977rad/s /// d- w1=3485.2rad/s , w2=3985rad/s)

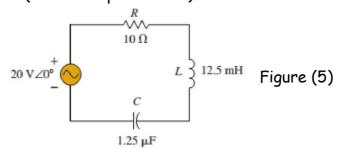
Dr. Basem ElHalawany

Benha University Faculty of Engineering Shoubra

Electrical Circuits (2)


Electrical Eng. Dept.

1st year communication


1-3 March 2015

Home Assignment (1):

1. For the circuit in Fig. 4, find the frequency ω for which v (t) and i (t) are in phase.

- 2. Refer to the series resonant circuit of Figure 5.
 - a. Determine the resonant frequency, ω_s .
 - b. Solve for the input impedance, $Z_T=Z\angle\theta$, of the circuit at frequencies of 0.1 ω_5 , 0.2 ω_5 , 0.5 ω_5 , ω_5 , ω_5 , ω_5 , and 10 ω_5 .
 - c. Using the results from (b), sketch a graph of Z (magnitude in ohms) versus ω (in radians per second) and a graph of θ (in degrees) versus ω (in radians per second).
 - d. Using your results from (b), determine the magnitude of current at each of the given frequencies.
 - e. Use the results from (d) to plot a graph of I (magnitude in amps) versus \boldsymbol{w} (in radians per second).

Good Luck

Dr. Basem ElHalawany